39th ICFA Advance Beam dynamics Workshop High Intensity High Brightness Hadron Beams - HB 2006 Tsukuba, May 29th - June 2nd, 2006

The LHC beam collimation

Stefano Redaelli, AB department

on behalf of the CERN LHC Collimation Project

CERN, CH-1211 Geneva

LHC proton collimation people

Project leader: R. Assmann (AB department) Synergy among many CERN departments: AB - TS - AT - SC

People involved:

O. Aberle, R. Assmann, I. Baishev, A. Bertarelli, C. Bracco, H. Braun, M. Brugger,
S. Calatroni, E. Chiaveri, A. Dallocchio, F. Decorvet, B. Dehning, A. Ferrari,
D. Forkel-Wirth, A. Grudiev, E.B. Holzer, J.B. Jeanneret, M. Jimenez, M. Jonker,
Y. Kadi, V. Kain, M. Lamont, R. Losito, M. Magistris, A. Masi, M. Mayer, E. Métral,
R. Perret, L. Ponce, C. Rathjen, S. Redaelli, G. Robert-Demolaize, S. Roesler,
F. Ruggiero, M. Santana Leitner, L. Sarchiapone, R. Schmidt, D. Schulte, G. Spiezia,
P. Sievers, M. Sobczak, K. Tsoulou, V. Vlachoudis, T. Weiler, J. Wenninger, ...

Inputs from many CERN working groups:

Injection, protection, dump, . . .

Additional support for beam tests:

G. Arduini, T. Bohl, H. Burkhardt, F. Caspers, M. Gasior, B. Goddard, L. Jensen, R. Jones, T. Kroyer, R. Steinhagen, J. Uythoven, H. Vincke, F. Zimmermann

Outside collaborations with

TRIUMF (optics design - completed)
IHEP (IR3 energy deposition studies)
Kurchatov Institute (radiation effects on C-C jaws)
SLAC, BNL, FNAL (phase 2 R&D, tertiary collimators and material studies)

- Introduction
- LHC collimation system layout
- Mechanical design of the collimator
- Achieved cleaning performance
- System limitations and upgrades
- Conclusions

Introduction

LHC (top) LHC x 200!! (inj) ISR HERA SPS **TEVATRON** SppS SNS LEP2 0.01 100 10000 10 1000 0.1 Beam momentum [GeV/c]

LHC enters in a *new territory* for handling ultra-intense beams in a super-conducting environment!

 $E_b = 7 \text{ TeV} - I_b = 3.4 \times 10^{14}$ **Stored energy** ~ 2 x 360 MJ Quench limit ~ 10 mJ / cm³ Damage (metal) ~ 50 kJ / mm²

- → Control losses 1000 time better than the state-of-the-art!
- → Need collimation at all machine states: injection, ramp, squeeze, physics
- → Important role in machine protection (no details here)

Some numbers

High stored beam energy (melt 500 kg Cu, required for 10 ³⁴ cm ⁻² s ⁻¹ luminosity)	~ 360 MJ/beam	Quench
Large transverse energy density (beam is destructive, 3 orders beyond Tevatron/HERA)	1 GJ/mm ²	Damage
High required cleaning efficiency (clean lost protons to avoid SC magnet quenches)	99.998 % (~10 ⁻⁵ p/m)	Heating
Activation of collimation insertions (good reliability required, very restricted access)	~ 1-15 mSv/h	activation
Small spot sizes at high energy (small 7 TeV emittance, no large beta in restricted space)	~ 200 μm	Actability
Collimation close to beam (available mechanical aperture is at ~10 σ)	6-7 σ	Stedance
Small collimator gaps (impedance problem, tight tolerances: ~ 10 μm)	< 3 mm (at 7 TeV)	Impo
Big and distributed system (coupled with mach. protection / dump)	~100 locations ~500 deg. of freedom	Preur

How can we meet all these **challenging** (and sometimes **conflicting**) requirements?

Phased approach: path towards nominal performance

Phase I	N _{coll} 13	I _{max} 100%	
Phase II	30	> 40%	Low-impedance (metal)
Phase III	4		> 50% of nominal luminosity
Phase IV	16	100 %	Ultimate cleaning performance

This talk → Focused on Phase I system:

- Final configuration at startup!
- Ensures required performance for commissioning and first years
- Already very challenging: 100 collimators = 500 deg. of freedom
- But we don't forget the upgrades:
 - Required ring locations are reserved
 - R&D for the Phase II collimators has started
 - When needed, we will be ready for nominal intensity!

- Introduction
- Collimation system layout
 - Phase I collimation layout
 - Multi-stage collimation
 - LHC aperture and collimator settings
- Mechanical design of the collimator
- Achieved cleaning performance
- System limitations and upgrades
- Conclusions

Layout of the LHC collimation system

Local cleaning at triplets

8 tertiary (2 per IP)→ TCT [W]

Passive absorbers for warm magnets Physics debris absorbers [Cu]

2 TCLP's (IP1/IP5)

Transfer lines

13 collimators \rightarrow TCDI [C]

Protection (injection/dump) 10 elements →TCLI/TCDQ [C]

>100 collimators for the Phase I system!

Layout of the LHC collimation system

Detailed tables for the records

Phase	Acronym	Material	Length [m]	Number	Locations	INJ	ТОР	Purpose
	Scrapers							
1	тснѕ	tbd	tbd	6	IR3, IR7			Beam scraping
2	тснѕ	tbd	tbd	2	IR3, IR7			Skew beam scraping
	Collimators							
1	ТСР	C-C	0.2	8	IR3, IR7	Y	Y	Primary collimators
1	TCSG	C-C	1.0	30	IR3, IR7	Y	Y	Secondary collimators
1	TCSG	C-C	1.0	2	IR6	Y	Y	Help for TCDQ set-up
2	TCSM	tbd	tbd	30	IR3, IR7			Hybrid secondary collimators
4	TCS4	tbd	tbd	10	IR7			Phase 4 collimators
	Diluters							
1	TDI	Sandwich	4.2	2	IR2. IR8	Y		Injection protection
1	TCLI	С	1.0	4	IR2, IR8	Y		Injection protection
1	тсы	С	1.2	14	TI2, TI8	Y		Injection collimation
1	TCDQ	C-C	6.0	2	IR6	Y	Y	Dump protection
Movable Absorbers								
1	TCT	Cu/W	1.0	16	IR1, IR2,		Y	Tertiary collimators
					IR5, IR8			, j
1	TCLA	Cu	1.0	16	IR3, IR7	Y	Y	Showers from collimators
1	TCL/TCLP	Cu	1.0	4	IR1, IR5		Y	Secondaries from IP
3	TCL/TCLP	Cu	1.0	4	IR1, IR5		Y	Secondaries from IP

How do we want to use all these collimators?

Similar normalized settings at injection (arc) and at 7 TeV (triplet). Canonical settings: $A_{TCP} = 6$ / $A_{TCS} = 7$ (= ;).

Project

CERN

Collimator gaps at injection - IR7

13

Collimator gaps at 7 TeV - IR7

- Introduction
- Collimation system layout
- Mechanical design of the collimator
 - Design criteria and challenges
 - Mechanical design
 - Beam test results
- Achieved cleaning performance
- System limitations and upgrades
- Conclusions

Challenges of the design requirements

Mechanical tolerance

b = 200 μm at 7 TeV/c

Heat load (7 TeV)

Minimum lifetime: min≈0.2h

Failure scenarios [Robustness!] Full injection batch 8 nominal bunches at 7 TeV/c

High radiation environment

~10¹⁶ protons per years!

40 μm surface flatness over L=1m **10 μm** positioning accuracy

Up to **30 kW** at top energy Keep T < 50 °C

- → 288 bunches ≈ 2 MJ (7.2 µsec)
- → 8 bunches \approx 1 MJ (0.2 µsec)

Radiation hardness of components E.g.: stepping motors: **10 MGy/year**

Phase I addresses successfully most of these challenges! Here: review main design features

The collimator assembly

Main design features: Two jaws (position and angle) Concept of spare surface Different azimuthal angles (H,V,S) External reference of jaw position

- •Auto-retraction
- •RF fingers
- ·Jaw cooling

A real collimator

A. Bertarelli, A. Dallocchio

A look inside the vacuum tank

What the beam sees!

Dealing with different azimuthal angles

Same support and quick plug-in system for different orientations Whole vacuum tank can be rotated to match the beam requirements (horizontal, vertical or skew)

A. Bertarelli, A. Dallocchio

The LHC collimator jaw

3D integration in the LHC tunnel

Highlights of lab and beam tests

Major milestones: Beam tests in 2004 (SPS)

Mechanical functionality with circulating beam

- Centering around beam with 50 μ m accuracy (see talk on Thr.)

Robustness test with extracted beam at 450 GeV

→ Collimator survived at worst injection failure case!

Robustness test with 450 GeV p beams

0.0003

0.00025

0.0002

No damage of the Carbon and Graphite blocks Permanent deformation of the Copper plate behind the jaw → Inconel plate solved the problem!

> **Collimator jaws AFTER impacts** of 450 GeV LHC injection batch (288x1.1 10¹¹, 7.2 µs, ~2 MJ)

Carbon/ carbon jaw **Graphite jaw**

Ē 0.00015 0.0001 250 µm 0.00005 0 200 0 400 600 800 1000 1200 s (m)

A. Bertarelli, A Dallocchio

- Introduction
- Collimation system layout
- Mechanical design of the collimator
- Achieved cleaning performance
 - Simulation tools
 - Beam loss patterns
 - Energy deposition studies
- System limitations and upgrades
- Conclusions

LHC loss map simulations

Cleaning performance at 7 TeV

Comparison with the previous system without shower absorbers and tertiary collimators (two-stage cleaning)

29

Losses downstream of the betatron cleaning

S. Redaelli, HB2006

30

Energy deposition studies

Inelastic impacts inside collimators → input for energy deposition studies

Courtesy of V. Vlachoudis

Energy deposition studies play a major role in the system design!

- → Energy in the super-conducting magnets versus quench limit
- → Estimate life time of warm magnets/electronics (passive absorbers)
- → Optimize layout of insertion (e.g. *chicane* design)
- → Quantify does to personnel (implications on the collimator design) and impact on the environment

Dose along the betatron cleaning

Radiation is basically confined within the warm insertions!

- Introduction
- Collimation system layout
- Mechanical design of the collimator
- Achieved cleaning performance
- System limitations and upgrades
- Conclusions

Limitations of the Phase I collimation

The proposed robust system (low Z) cannot achieve the I_{nom}:
 ⇒ Reduced efficiency (poor absorption of Carbon)
 Losses downstream of IR7 close to quench limit for perfect machine
 ⇒ Large impedance (small gaps + large resistivity)
 Severe beam instabilities at nominal intensity

Solution: use high-Z collimator material (metals) !!

S. Redaelli, HB2006

Studies for system upgrades

- ~50 space reservations in the LHC for additional collimators
- R&D for the *Phase II Hybrid collimators* has started!
- US-LARP program to build metallic consumable collimators!
- European program recently started to fund new studies

"The proposal aims at significantly extending the present state-of-the-art in high power and high efficiency collimators.
... extending the state of the art by another factor 5-10 beyond LHC phase 1 collimation, reaching the 1 GJ/mm² regime with ultra-high efficiency collimation. The proposal includes phase 2 of LHC collimation but extends beyond by including novel concepts like crystals and R&D for overcoming specific limitations for ion operation."

Who wants to work with us on this challenging research topics?

US-LARP: LHC consumable collimator

Consumable rotary collimator for the NLC

Time line: (approved by DOE)	FY 2004: FY 2005: FY 2006: FY 2007: FY 2008: FY 2009:	Introduction to project Phase II CDR and set up of a collimator lab at SLAC Design, construction & testing of a mechanical prototype Design, construction & no-beam testing of a beam test prototype Ship, Install, Beam Tests of beam test prototype in the LHC Final drawing package for CERN
	FY 2010: FY 2011:	Await production & installation by CERN Commissioning support

Conclusions

- LHC enters a new territory of hadron beam collimation!
- Phased approach = path towards ultimate LHC performance
- "Robustness" is the keyword for the Phase I system
 - → Multi-stage cleaning based on (mostly) Carbon collimators
 - → Mechanical design thoroughly assessed (beam + lab. tests)
 - → Expected cleaning inefficiency performance: 10-4 !
 - Impedance and cleaning limit the Phase I to < 1/2 I_{nom}
- We are confident that we will handle the ~100 MJ regime!
- Another step forward is needed to successfully tackle the GJ/mm² regime of nominal and ultimate LHC performance!