Study of Loss Distribution with detailed Aperture Model

E. B. Holzer, V. Kain

- Beam loss distribution is important input for the BLM-system
- Dilution length of losses: important information for LHC collimation system

Aperture Model + Particle Tracking Environment

- Aperture Information for Dispersion Suppressor and Arc downstream (beam1) of IR7
 - □ First marker at: ~235 m from IP7
 - □ Last marker at: ~2845 m from IP7
- Every change of aperture is included (transition pieces, BPMs, beamscreens outside the magnets, locations of bellows,...)
 - At some locations in the order of 5m without aperture element: more markers will be included
- MBs and MQs are sliced

Aperture Model + Particle Tracking Environment

- □ MAD-X: Aperture Information \rightarrow LHC sequence.
- MAD-X: Particle Tracking
- Post-processing:
 - □ longitudinal loss distribution $(N_{lost}(s))$
 - list of hit elements
 - □ coordinates of lost particles at each hit element
 - dilution length for losses

Definition of Dilution Length

Dilution Length and collimation:

The cleaning inefficiency is determined via tracking programs producing secondary and tertiary halo particles.

Cleaning inefficiency for N lost particles:

$$\eta_{\rm c}({\rm a_{c}}) = \frac{1}{N} \sum_{i=1}^{N} {\rm H}({\rm A_{r}} - {\rm a_{c}})$$

Local cleaning inefficiency: required local cleaning inefficiency defined via quench limit and maximum loss rate

$$\widetilde{\eta}_{c} = \eta_{c} \, / \, L_{dil} = rac{R_{q}}{\dot{N}_{max}}$$

Definition of Dilution Length

- Assumption on dilution length so far: 50m
- To determine the dilution length from our data:
 - \Box output of simulation: number of lost particles per m: $N_{lost}(s)$
 - dilution length:

$$L_{dil}^{-1} = \frac{\max N_{lost}(s)}{\sum_{s} N_{lost}(s)}$$

Testing the Environment ...

- Loss distributions for test particle configurations (uniform distributions in x and y)
- □ 7 TeV protons, 10⁴ particles
- single pass through the section with detailed aperture
- No errors

Uniform distribution in y, x = 0

Comparison: cuts in phase space: whole arc (46 halfcells) – 29 halfcells

Uniform distribution in y, x=0: normalized phase-space: cut at \sim 55 σ

Lost Distribution: uniform distribution y, x=0. Losses occur only at quads.

Comparison: loss locations - horizontal aperture limits ...

Comparison: loss locations - vertical aperture limits ...

Comparison: uniform distributin in x (y=0) and unifrom distribution in y (x=0)

Uniform distribution in x (80 σ), y=0; Energy offset: σ_{δ} =0.001

Uniform distribution in x and y (80 σ); Energy offset: σ_{δ} =0.001

Some numbers ...

Uniform	L _{dil}	cut	loss@	loss@	else
distribut.			quads	bends	
	[m]	[σ]	%	%	%
x, y=0	3.4	~75	83	4	13
x, δ≠0	7	~60	38	39	23
σ _δ =0.001					
y, x=0	6.3	~55	100	0	0
х, у	13.7		63.3	29.3	7.3
x, y, δ≠0	17.6		52	40	8
σ _δ =0.001					

Conclusion

- We now have a tool to study longitudinal beam loss distributions.
- As it is based on MAD, errors in the machine (orbit, misalignments,...) can be easily included

For the next step (dilution length for collimation system) we need realistic initial particle coordinates: Halo data from Ralph