

Analysis of the T-980 experimental data

V.Previtali

G. Annala, R. Assmann, N. Mokhov, S. G. Peggs, S. Redaelli, D. Still

Remove the W target and insert the Crystal

The halo particles are channeled on the E03 collimator

- Detectors:
 - *Pin diode:* immediately downstream of the crystal. It measures the total inelastic interactions at the crystal location
 - *LE033 BLM counters* : immediately downstream of the collimator. It measures the total losses at the E03 collimator location
 - *E1 scintillating paddles*: **gated** counters for losses at the E03 collimator. They can discriminate between bunched and abort gap beam.

- Si o-shaped crystal, 5 mm long
- 410 µrad bending angle (9.5 mm displacement at E03 collimator)
- 1.4 mrad of mis-cut angle

My work at fermilab

- Experimental part:
 - Taking part in 3 different "end of storage" (EOS) studies
 - October 29th
 - November 20th
 - December 10th
 - Analyzed the data from the three MDs plus old data (september, beginning of october) and some data from 2005 for comparison.
- Simulations:
 - Retrieve the tevatron optics and convert it in MADX format (yet to be checked)
 - Retrieve the tevatron aperture file and convert it with a formato compliant to the BeamLossPattern program (yet to be finished)
 - Adapt Sixtrack for the Tevatron Lattice

My work at fermilab

- Experimental part:
 - Taking part in 3 different "end of storage" (EOS) studies
 - October 29th
 - November 20th
 - December 10th
 - Analyzed the data from the three MDs plus old data (september, beginning of october) and some data from 2005 for comparison.
- Simulations:
 - Retrieve the tevatron optics and convert it in MADX format (yet to be checked)
 - Retrieve the tevatron aperture file and convert it with a formato compliant to the BeamLossPattern program (yet to be finished)
 - Adapt Sixtrack for the Tevatron Lattice

3.

The EOS beam studies: standard procedure

1. Crystal as leading edge:

we retract all the collimators but the crystal and the E03 collimator. (and some collimators for kicker pre-fire error protection)

2. Angular scan: change the crystal orientation and measure losses at the E03 collimator

The crystal behavior depends on the relative angle between the incident particles and the crystaline planes! First task: find the right crystal orientation

Collimator scan: keep the angle of the crystal fixed, and change the horizontal position of the collimator E03 We expect to observe a precise displacement of the halo beam in

channeling position.

Angular scan: what we found...

The real behavior

There is a clear peak at -240 µrad (channeling?).

The signal for bunched beam is noisy.

Angular scan: what we found...

The real behavior

There is a clear peak at -240 µrad (channeling?).

The signal for bunched beam is noisy.

PUZZLING:

The measured acceptance of channeling is $>100 \mu rad$: much larger than expected! (~12 μrad).

What is the peak @250urad?

- We can measure the displacement between the channeled and the nonchanneled beam
- The expected displacement (for 410µrad kick) is 9.5 mm

- 1. Angular scan:
 - **1. Angular spread**: Why is the channeling peak acceptance much larger (>100 μrad) than expected (~12 μrad)?
 - 2. No VR: Why we do not see a clear VR effect?
 - **3. Secondary peaks:** What is the peak at ~250/300 µrad in the angular scan? Is there a third peak around ~700 µrad?
- 2. Collimator scan:
 - **1. Reduced displacement:** Why the measured displacement (~7 mm) for the channeling peak is lower than the expected one (9.6 mm)?

Hypothesis

Different attempt have been done to explain these features. Two hypothesis:

- 1. Feature of the beam (momentum offset)
 - Off momentum particles have a different incoming angle: can this explain the channeling peak width?
 - Off momentum particles have a different displacement at the collimator location: how much is the difference?
- 2. Feature of the crystal (mis-cut angle)
 - What is the effect of the mis-cut on the channeling acceptance?
 - What is the effect of the mis-cut on the observed displacement at the collimator location?

Hypothesis

Different attempt have been done to explain these features. Two hypothesis:

- 1. Feature of the beam (momentum offset)
 - Off momentum particles have a different incoming angle: can this explain the channeling peak width?
 - Off momentum particles have a different displacement at the collimator location: how much is the difference?
- 2. Feature of the crystal (mis-cut angle)
 - What is the effect of the mis-cut on the channeling acceptance?
 - What is the effect of the mis-cut on the observed displacement at the collimator location?

Off-momentum particles

Taking into account that:

- the dispersion at the crystal (and at the collimator) is quite high (2m!)
- we are channeling also the abort gap beam
- the abort gap beam has high $\Delta p/p$ values We tried to evaluate the effect of dealing with large off-momentum particles

For reference:

1 σp/p in the tevatron is 140 MeV The RF bucket height is 450 MeV In the abort gap particles are just outside of the separatrix

Off-momentum particles: angular spread

 $\delta p/p$

 σ_{cry}

g= 2.9 10⁻³ σp/p 2.9 10⁻³

function =
$$\alpha + \beta \eta' / \eta$$

The grazing condition requires that, at the crystal location, the maximum betatron extension of the particle plus the offset given *by the dispersion* is equal to the x coordinate of the crystal's edge => careful: the synchrotron oscillation is neglected (considered slow enough) in this first approximation.

The angular spread is only ~1.2 μ rad for particles with $\Delta p/p = 4 \sigma_p$!

The momentum offset cannot explain a 100 µrad-wide channeling peak

Every kick changes the amplitude and the phase of the particle. The new amplitude and the phase shift depend on the initial amplitude: different outcomes for particles with different energy!

Particles with higher $\Delta p/p$, will have different amplitude/phase shift in comparison with on momentum particles => they will have different displacement at the collimator. How much?

Assuming the channeling kick of 410 μrad

Hypothesis

Different attempt have been done to explain these features. Two hypothesis:

- 1. Feature of the beam (momentum offset)
 - Off momentum particles have a different incoming angle: can this explain the channeling peak width?
 - Off momentum particles have a different displacement at the collimator location: how much is the difference?

2. Feature of the crystal (mis-cut angle)

- What is the effect of the mis-cut on the channeling acceptance?
- What is the effect of the mis-cut on the observed displacement at the collimator location?

Even if we are in the "good" orientation, the mis-cut could affect the particle-crystal interactions. In the following we analyze the problem in details.

 Particles are aligned with the crystal planes at the entrance face

- Particles are aligned with the crystal planes at the entrance face:
 - The closest point to the beam is the end of the crystal
 - They will have to cross ~5 µm of amorphous layer before being channeled

CERN - 16Feb2009

For each orientation of the crystal, there will be an impact parameter λ_0 for which the particles are aligned with crystal planes

=> **channeling**, but with a reduced channeling angle! This could explain the reduced displacement at the collimator AND the larger channeling peak.

CERN - 16Feb2009

- For each orientation there will be a superposition of the three effects (reduced channeling, VR, VC)
- We channel in each orientation, but with reduced channeling angles! We can calculate this reduced angle, and predict the displacement at the collimator.

- For each orientation there will be a superposition of the three effects (reduced channeling, VR, VC)
- We channel in each orientation, but with reduced channeling angles! We can calculate this reduced angle, and predict the displacement at the collimator.

CERN - 16Feb2009

Zoom of the channeling-VR region - only BLM data

How to interpret our angular scan?

CERN - 16Feb2009

Positive mis-cut angle:

comparison with measured data

We selected 6 different orientations for new collimator scans:

- 320 µrad
- 295 µrad
- 287 µrad
- 237 µrad
- 200 µrad
- 50 µrad

losses [au] For each point we measure the displacement of the halo at the collimator, and compare it with the expected displacement

All toghether...

BLM losses at E03 for different orientations of the crystal, in channeling-VR region

E03 horizontal position [mils]

crystal tilt [urad]

Displacement for different orientations of the crystal

Displacement values at E03 for different orientations of the crystal: measured and expected

crystal tilt [urad]

... more questions... Slope region

What is this behavior? It is common to all the angular scans.

It is equivalent to a r.m.s. kick of **100 µrad** !

This effect probably covers the "reduced" channeled peak for small channeling kicks!!! That's why we do not observe the correct displacement for the -50 µrad orientation.

-150

-100

-50

versus collimator position (E03HCP)

Investigate the 'slope' region

What is the physical process which cause the 'slope' region at the end of the collimator scans?

- 1. Is the 'slope' region due to the **amorphous** behavior of the 'amorphous' layer?
 - In this case, and according to the model of our crystal, the amorphous region should be larger for the crystal closer to 'pure channeling' position -> this is in contraddiction with our data.
- 2. Cannot be **channeling**: we have detected the channeling 'shoulder'!
- 3. Cannot be **dechanneling**: the dechanneling kick cannot be larger than the channeling kick!
- 4. Cannot be **single volume reflection**: the kick is too large (average of ~100 μrad)
- 5. Could it be **multiple volume reflection**?

CERN - 16Feb2009

Investigate the secondary peak Conclusion

- In the secondary peak at ~300 µrad there is evidence of some coherent effect in the crystal.
- Cold it be a secondary channeling peak? (with angle < 100 µrad, then covered by the slope region)
- Is the VR region larger than expected? How is this possible? -> we need an exact geometrical description of the crystal.
- What happens in the middle? (between where we believe is the end of VR and the secondary peak). This should be investigated.

More questions?

- What is the effect of the electron lens in the particlecrystal dynamic?
- Is the synchrotron oscillation playing an important role? Is the "grazing" assumption valid? Should we evaluate in more details the impacting angle of off momentum particles?
- What happens if the RF voltage is turned up/down (moving the separatrix)? What happens if the RF frequency itself is slightly changed, shifting the underside of the separatrix slightly up/down?

Conclusions

A lot of open questions...

- We trust the characterization of the crystal made in Ferrara (V. Guidi et al.): we assume the bending angle=410 µrad.
- We observe a channeling acceptance that is far too large.
- We observe a displacement of the channeled beam at the collimator which is lower than expected (= lower kick).
- Different hypothesis to explain this features:
 - Feature of the beam (momentum offset)
 - Feature of the crystal (mis-cut angle)
- The momentum offset does not have significant influence.
- The mis-cut angle can partially explain the results we observe.
- Further investigations will be done in the next studies.

CERN - 16Feb2009

Courtesy of A.Drozhdin, A,Apyan

All toghether... Gaussian fits

LE033 losses versus collimator position (E03HCP)

