Collimation Counting Rates

1. Collimation (basic definitions):

$$
n_{\text {primary }} * \eta=n_{\text {tertiary }}
$$

$n_{\text {primary }}$: impact rate on primary collimator; $\quad \eta$: collimation inefficiency; $\quad n_{\text {teriary }}$: loss rates at aperature limitation
2. Losses at collimation:

$$
n_{\text {col }}=n_{\text {prim }}(1-\eta)=\sum_{i=1}^{4} N_{\text {primary } i} * \alpha_{i}+\sum_{i=1}^{16} N_{\text {secondary } i} * \beta_{i}
$$

$n_{\text {col }}$:loss rate at collimators; $N_{\text {primarry }}, N_{\text {secondary }}$: counting rates at the collimator monitors, $\quad \alpha, \beta$: monitor sensitivity
3. Losses at other locations:

$$
n_{\text {teriary }}=n_{\text {col }} \frac{\eta}{1+\eta}=\sum_{i=1}^{N} \text { quenchlevel } l_{i} * \overline{\text { safety }}
$$

safety: ratio of maximal safe losses to quenchlevel; N : number of locations where losses will occur
4. Aim of collimation: measure losses at collimation to avoid quenches and damages (aimed predict accuracy of quench levels with an error of 2)

Quench Level Rates

1. MB bending magnet quench level rates Lit.: B. Jeanneret, LHC Project Report 44
2. Rates depend strongly on duration of losses
3. non linear rate change between injection and top energy
quench levels tor LHC at 450 GeV and 7 TeV

Quench Levels

same plot as on previous transparency but in units of protons/meter quench levels

Bernd Dehning
23.10.2001

Proposed Collimator Locations IP7

Collimators are about 1m apart and some arrangements are composed out of beam 1 and beam 2 collimators (distinction between losses of different beams will be not possible).

Shielding at Betatron Collimation

First layout of a IP7 shielding, the beam loss monitors are placed in the gap between collimator shielding and regular shielding

Longitudinal Energy Deposition

1. secondary particle energy deposition along the regular shielding
2. loss monitor location $\mathrm{z}=0$
3. at 100 cm (location of foreseen second collimator in some arrangements) the energy deposition is only reduced by a factor of 10 ($10<x<20$)
Result: crosstalk between monitors, reduction of collimation adjustment accuracy=>
careful investigations needed

