

1

Showering Studies for BLMs

Edda Gschwendtner

• Idea:

detect shower particles outside cryostat induced by beam particle losses

- relation between beam particles and quenchlevels
- correspondence between particle fluence outside cryostat and quenchlevels
- Method:
 - → proton loss distribution: most likely position of losses misalignment, β_{max}
 - → proton loss shower simulation
 - → obtain detector signals per lost proton

→ proposal for beam loss detectors

position, corresponding signals for quenchlimit.

With the

• Aim

→ distinguish between 2 beams

→ find out where loss has happened

Geant 3.21

Dispersion Suppressor

Detailed simulation of magnet geometry, Version 6.3 MB,MQ,MQM, MQML,MQMC,MQTL, MCBCB,MSCBA,MCDO,MCS,BPOM,

→ magnetic field maps for Quadrupoles, Dipoles (Roxie)

point loss

- incident angle of 0.25mrad
- losses in horizontal (QF) and vertical plane (QD) of beam screen
- 150 events with same impact parameters

MQML in Q10

• Longitudinal proton loss distribution will modify shower distribution significantly!

Proton loss density in DS

proton loss density in DS with collimators in D2 and D5

