





| LHC beam parameters    |                    |                                   |                                        |  |  |
|------------------------|--------------------|-----------------------------------|----------------------------------------|--|--|
|                        |                    |                                   |                                        |  |  |
| Luminosity             | $10^{34}$          | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ |                                        |  |  |
| $\sigma^*$ at crossing | 10                 | $\mu { m m}$                      | $\beta^* = 0.5 \text{ m}$              |  |  |
| Stored beam            | $3 \times 10^{14}$ | protons                           | $2800\times1.05\times10^{11}$          |  |  |
| Beam energy            | 7000               | Gev                               | (injection 450 GeV)                    |  |  |
| Injected energy        | $2 \times 10^6$    | J                                 | $\equiv 24 \times 4$ kg melted Copper  |  |  |
| Stored energy          | $340 \times 10^6$  | J                                 | $\equiv 2 \times 800$ kg melted Copper |  |  |



## **Expected losses versus quench limit - 2**

| Case      | Losses $[p(s^{-1})]$                      | Quench [p $m^{-1}(s^{-1})$ ]  |
|-----------|-------------------------------------------|-------------------------------|
| Injection | $\Delta N_{injection} = 1.25 \ 10^{12}$   | $\Delta N_q = 2.5 \ 10^{10}$  |
| Ramping   | $\Delta N_{\overline{RF}} = 3 \; 10^{13}$ | $\Delta N_q = 2.5 \; 10^{10}$ |
| Collision | $\dot{N} = 8 \; 10^{10}$                  | $\dot{N}_{q} = 6 \; 10^{6}$   |

Clear need for collimation – betatronic and momentum with collimation efficiency  $> 10^4$  m Injection must be made with collimators in working position In addition: survive to dump kicker failure



Table 1: Correlated phase advances  $\mu_x$  and  $\mu_y$  and X - Y jaw orientations  $\alpha_{\text{Jaw}}$  for three primary jaw orientations  $\alpha$  and four scattering angles  $\phi$  with  $\mu_o = \cos^{-1}(n_1/n_2)$ .

| _ | lpha    | $\phi$   | $\mu_x$       | $\mu_y$       | $lpha_{ m Jaw}$ |            |
|---|---------|----------|---------------|---------------|-----------------|------------|
| - | 0       | 0        | $\mu_o$       | -             | 0               | mom. coll. |
|   | 0       | $\pi$    | $\pi - \mu_o$ | -             | 0               | mom. coll. |
|   | 0       | $\pi/2$  | $\pi$         | $3\pi/2$      | $\mu_o$         | mom. coll. |
|   | 0       | $-\pi/2$ | $\pi$         | $3\pi/2$      | - $\mu_o$       | mom. coll. |
|   | $\pi/4$ | $\pi/4$  | $\mu_o$       | $\mu_o$       | $\pi/4$         |            |
|   | $\pi/4$ | $5\pi/4$ | $\pi - \mu_o$ | $\pi - \mu_o$ | $\pi/4$         |            |
|   | $\pi/4$ | $3\pi/4$ | $\pi - \mu_o$ | $\pi + \mu_o$ | $\pi/4$         |            |
|   | $\pi/4$ | $-\pi/4$ | $\pi + \mu_o$ | $\pi - \mu_o$ | $\pi/4$         |            |
|   | $\pi/2$ | $\pi/2$  | -             | $\mu_o$       | $\pi/2$         |            |
|   | $\pi/2$ | $-\pi/2$ | -             | $\pi - \mu_o$ | $\pi/2$         |            |
|   | $\pi/2$ | $\pi$    | $\pi/2$       | $\pi$         | $\pi/2 - \mu_o$ |            |
|   | $\pi/2$ | 0        | $\pi/2$       | $\pi$         | $\pi/2 + \mu_o$ |            |
|   |         |          |               |               |                 |            |

Real LHC optics: an adequate approximation of this perfect case





















## **Dump error and materials for the jaw**

Erratic dump error is the worst case for jaw integrity Shower studies clearly display advantage for low-Z materials Case: possible reduction of mech. properties (allowed once/year) Need more professional expertise

|              |                  | N [bunches] | Margin Factor |
|--------------|------------------|-------------|---------------|
| Expected     |                  | 6 - 16      |               |
| Allowed for: | Beryllium        | 16 - 20     | 1-2           |
|              | Graphite         | 10 - 20     | 1-2           |
|              | Copper/Aluminium | 0.1/0.5     | 0.01-0.03     |
|              | Copper/Aluminium | 0.1/0.5     | 0.01-0        |

With low-Z, power deposition is low ,  $\overline{RF}$  :  $\Delta T < 20$  K

 $\rightarrow$  no harmful longitudinal deformation

## Materials for the jaws

- NEED low-Z materials
- Serious candidates:
  - Be, but toxicity
  - Pyrolythic Graphite, but brittle+dust, but poor conductor
  - Boron Nitride, but  $\sim$  clay, but dielectric
- Challengers:
  - Graphite with diamond coating, Fiber reinforced ceramics
  - Composite jaws: graphite core with Be plate near beam,...
- In-depth study starting now

## **Dynamic stress analysis for 10 bunches impact on Be**

3D Ansys analysis, with MARS energy density map, Preliminary data Dynamic peak stress  $\sigma = 1.5 \times 10^9$  Pa Static peak stress  $\sigma = 1.9 \times 10^9$  Pa

 $\sigma_{uts} = 0.8 \times 10^9 \text{ Pa}$ 

