

Calculations

- 1 Worst case: straight on impact (simulation I.Baishev/IHEP)
- 2a- Intermediate: 1 mrad impact angle beam screen
- 2b- Intermediate: 1 mrad impact angle s.c. coil
- 3a- Regular: 0.25 mrad impact angle beam screen
- 3b- Regular: 0.25 mrad impact angle s.c. coil

Thermal/mechanical criteria

Disclaimer: I am not an expert in metallurgy/s.c cable \rightarrow *Further checks?*

pipe, passive elements

$$\Delta T = \frac{2}{3} (0.7T_{melt} - T_{room}) = 400 \text{ K (Copper)}$$
(1)

s.c. cable

$$aT^{3} + bT^{4} - (\frac{\Delta l}{l})_{c} = 0, (\frac{\Delta l}{l})_{c} = 4 \times 10^{-4} \rightarrow T_{c} = 104 \text{ K}$$
(2)

$$\Delta Q = 9RT \frac{\rho}{m_A} \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\frac{\Theta_D}{T}} \frac{z^3 dz}{\exp(z) - 1}$$
(3)

$$\Delta Q_c = 87 \, \mathrm{Jcm}^{-3} \,. \tag{4}$$

Straight results

Number of bunches at limit of destruction

	Case	injection	top	material
1	Straight on $x' = \pi/2$	5.3	0.05	Copper
2a	Intermediate $x' = 1.0 \text{ mrad}$	7	0.2	Beam screen
3a	Regular $x' = 0.25$ mrad	8	0.4	Beam screen
2b	Intermediate $x' = 1.0 \text{ mrad}$	12	0.4	s.c. coil
3b	Regular $x' = 0.25$ mrad	22	0.7	s.c. coil

Impact angles

• CO corrector $\alpha_{max,inj}^{co} = 1.2 \text{ mrad} \Rightarrow$ 'intermediate' case

•
$$\alpha_{max,inj}^{D's} = 15 \times \alpha_{max,top}^{D's} \sim 30 \text{ mrad} \equiv \pi/2 \Rightarrow \text{Case 1}$$

Therefore, the 'Regular case' can be considered if

- The 'pilot bunch in' strategy is made mandatory (proposal MPWG)
- The CO control between .45 and 7 TeV is secured (what does that mean: MPWG, LCC)
- Look further to quench limits

Summary

Margin on destruction case : $\sim 30\%$

	Destruction	Quench
Nb of bunches	N_b^d	N_b^q
Injection	8	10^{-2}
Тор	0.4	10^{-5}

Number of bunches computed with 1 bunch $n_p = 1.05 \times 10^{11}$ What counts is $N_b \times n_p \rightarrow$ scaling allowed Notice: at top energy, $N_b^d = BPMsens./5 \rightarrow No$ safe mode

(my) recommended additional precautions

- No collimation \rightarrow Weak collimation $(8 10 \sigma)$
- BLM system fully operational
- Strict secure operational procedures for full coast also applied (what does that mean: MPWG, LCC)
- Clean injection mandatory (collimation in transfer line still under design/discussion)
- $pilot(5\%) \rightarrow 1$ full bunch $\rightarrow 8$ bunches highly recommended

Ion beam

- Ion hadronic shower have a shape nearly identical to protons
- But the density is Z times higher
- \Rightarrow Scaling: Total $N_{ions} = N_{protons}/Z$
- Lead: $Z = 82 \Rightarrow$ destruction limit is

$$N_{inj} = 8 \times 1.05 \times 10^{11} / Z = 9.8 \times 10^9$$
(5)

$$N_{top} = 10^{-2} \times 1.05 \times 10^{11} / Z = 1.3 \times 10^7$$
 (6)

- Yellow Book: $N_{stored} = 10^{10}$ ions
- \Rightarrow Safe at injection

References

- [1] Quench levels and transient beam losses in LHC magnets,J.B. Jeanneret, D. Leroy, L. Oberli and T. Trenkler, LHC Project Report 44, July 1996.
- [2] Optics constraints imposed by the injection in IR2 and IR8,O.S. Bruning and J.B. Jeanneret, LHC Project Note 141, May 1998.
- [3] S. Fartoukh, J.B. Jeanneret and J. Pancin. *Heat deposition by transient beam passage in spoilers*, CERN-SL-2001-012(AP), CERN, Geneva, March 2001, to be submitted to Physical Review.