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1 INTRODUCTION

In high intensity proton colliders with superconducting
magnets, quenches induced by beam losses are unavoidable
in the absence of a collimation system. We will show that
a single stage collimator system cannot suffice at TeV en-
ergies. We discuss a two-stage collimation system first as
an optical system then considering true scattering in col-
limator jaws, giving some emphasis to the LHC project.
Finally, we present the preliminary measurements done at
120 GeV/c in the SPS ring with a simplified three stage
collimation system.

2 PROTON LOSSES AND QUENCH LEVELS

Proton losses can be divided in three basic classes, namely
injection, ramping losses and steady losses in collision. In
all these cases and in the absence of a collimation system
the losses might be concentrated near one location which is
the aperture limitation of the ring. The following numerical
values are related to the nominal LHC parameters. The
effective longitudinal spreading at the loss point is strongly
dependent of the local parameters, but can be as low as
�L � 10 m, computed with the average betatronic angle
at the effective local vacuum chamber radius.

An injected batch hasNp = 2:4 1013 protons and is6 �s
long. The ratio between actual and tolerable losses is

r =
fNp

�nq�L
= 240 (1)

with f = 0:1 a somewhat arbitrary fraction of the batch
lost immediatly and�nq = 109 pm�1 the quench level for
fast losses (see below Section 2.1 and Table 2).

At ramping, RF-untrapped protons are not accelerated
and migrate slowly towards the vacuum chamber. The flash
of losses lasts�t � 0:1s, i.e. more than the time needed
to make use of the helium trapped in the cable, allowing
�nq = 2:5 1010 pm�1 (see below Section 2.1 and Table
2). The full stored intensity isNp = 3 1014 protons. With
againf = 0:1 we obtain using (1)r = 125.

In collision, the halo is fed by elastic scattering in
7 + 7 TeV collisions, at a rate of_nel � 109 ps�1 for
two experiments withL = 1034cm�2s�1 and�el = 40
mbarn . The scattered protons are emitted at an angle
close to the beam divergence at the crossing point [1]
and slowly enlarge the transverse beam tail. Losses as-
sociated to transverse diffusion related to machine im-
perfections are estimated from SPS collider experience.

�Formerly CERN–SL Division, now at Siemens-Matsushita OHG,
Deutschlandsberg,Austria

Table 1:Maximum density of energy deposited in the coil mag-
net by a proton impacting the vacuum chamber at the betatronic
angle (see text).

p [Tev/c] "max [J cm�3] Leff [m] "dist [Jm cm�3]
.45 1:4 10�11 1.0 1:4 10�11

7 9:2 10�10 0.7 6:5 10�10

With a lifetime of �beam � 50 hours the losses would be
_nbeam = Np=�beam � 2 109 ps�1, for a total _Nloss =
_nbeam + _nel � 3 109 ps�1. The steady quench level will
be _nq � 8 106 pm�1s�1 (see below Section 2.2 and Table
3). In this caser = _Nloss=( _nq�L) = 30, without taking
into account large fluctuations of the losses associated to
short term instabilities of the beam halo.

In all three cases, the factorr is much larger than the
allowed valuer = 1. The sole good way to lowerr is
to use collimators which both absorb protons or dilute in
phase and amplitude those one that are scattered back into
the aperture of the ring.

2.1 Transient quench levels

This section summarises the content of the report [2]. The
transient quench level of a magnet is quantified basically by
the amout of energy per unit volume�Q which is needed
to raise the temperature of the coil above its critical value
Tq. To compute the number of protons lost locally which
induce a quench, the average shower (hadronic and electro-
magnetic) developped by a proton impacting the vacuum
chamber near the coil of the magnet was simulated with
the CASIM code [3]. This allows to compute the maxi-
mum density of the energy release"max by the shower in
the coil. In practice, apart from a few pathological cases,
the proton losses are spread over distances longer than the
effective length of the showersLeff � 1 m. Therefore,
instead of"max, the quantity"dist = "maxLeff is used.
Numerical values are given in Table 1.

The number of protons�nq which must be lost locally
to induce a quench is

�nq =
�Q

"dist
(2)

where�nq has the units protons m�1. For a givenTq,
the heat reserve is the integral of the specific heat between
the bath of heliumTo � 1:9K andTq with Tq � 9K at
injection beam energy andTq � 2:8K at top beam energy.

The heat reserve�Q(Tq) depends also on the duration
of the transient loss. The cable of the coil is made of wires



Table 2: Heat reserve and allowed transient losses of protons
at injection momentum (upper part) and top momentum (lower
part) in LHC, see text. First two lines, metallic contribution only.
Third line with trapped helium included. The uncertainty on these
values is about�50%.
�t [ms] �Q [J] "dist [Jm/cm�3] �nq [pm�1]
< 3 4 10�2 3:8 10�11 109

6 4 10�2 1:4 10�11 3 109

> 50 35 10�2 1:4 10�11 2:5 1010

�t [ms] �Q [J] "dist [Jm/cm�3] �nq [pm�1]
< 1 8 10�4 1:3 10�9 6 105

3 8 10�4 6:5 10�10 1:2 106

> 10 3 10�2 6:5 10�10 4:6 107

closely packed in an insulator, through which the helium
flows too slowly to contribute in the case of transient losses
(see next section). On the other hand, the heat reserve of the
helium trapped between the wires contributes but the heat
transfer is limited by the film of bubbles which develops at
the interface of the two media above a critical value. The
critical volumetric transfer of power is estimated to�V = 8
Wcm�3 at injection and�V = 4 Wcm�3 at 7 TeV. The
critical time scale to allow the use of the trapped helium is
thus�t = �Q(Tq)=�V . The contribution of the helium to
�Q(Tq) is integrated numerically using experimental data
[4].

At shorter time scale, the sole metallic part of the cable
contributes to�Q(Tq). In spite of some modifications re-
lated to the superconducting state of the NbTi, the specific
heat of the wires is dominated by the cubic dependence on
T of the Debye theory. The contribution of the metal to
�Q(Tq) is therefore small at 7 TeV when compared to the
one of the helium, even if the last one occupies only five
per cent of the volume of the cable.

At a further smaller time scale�t � 2ms, below the tem-
perature decay time across the section of the cable,"dist
must be multiplied by a factor 2-3, to take into account the
radial variation of the energy deposition inside the cable
"dist(r). Above that critical value, the average radial value
can be used.
�nq as computed with (2) for the three different time

scales discussed is given in Table 2. Linear interpolation
can be used between the caracteristic time scales, keeping
in mind that all values are certainly not more precise than a
factor two.

2.2 Steady quench levels

The steady power which can be evacuated by the coils
while staying below the critical temperature is related to the
electrical insulation of the cables. The heat is evacuated off
the cables by the exchange of helium through this insula-
tor. The allowed flux of energy per unit volume of cables
given in Table 3 are the result of a compromise between the
electrical resistivity and the porosity of the insulator. These

Table 3:Allowed steady losses of protons (see text). The uncer-
tainty on these values is about�50%.

p [Tev/c] Wq [W] "dist [Jm/cm�3] _nq [p(ms)�1]
.45 10�2 1:4 10�11 7 108

7 5 10�3 6:5 10�10 8 106

values are measured on sample coils. The allowed steady
rate of protons is given by_nq = Wq="dist.

The comparison of the allowed transient losses�Q =
8 10�4 J at the time scale�t = 3 10�3s (top energy, table
2) with the amount of energy removed by steady conduc-
tion during the same time�Qcond = Wq�t = 1:5 10�5 J,
indicates that close to their upper limit transient losses rely
only on local heat reserve.

3 A SINGLE COLLIMATOR AND TRANSVERSE
DIFFUSION OF THE HALO

To be efficient, a primary collimator must be placed in-
side the short term dynamic aperture (short term meaning
here< 1000 turns). In the LHC it will be at a normalised
transverse depth ofn1 = x=�x � 6. In this range of
amplitudes, the transverse drift speedvd of the halo can-
not be predicted either precisely or reliably. At the CERN
antiproton-proton collider, in collision somewhat below the
beam-beam limit, an experiment indicatedvd � 3 �/s at
n1 = 6 [5]. LHC tracking data without ripple at injection
energy indicatevd < 0:05 �/s [6]. For givenvd, a distri-
bution of impact parameter, parametrised by a range�b is
obtained by a simple multiturn tracking. Some values are
given in Table 5. The computed�b must be compared to
the critical impact parameterbc, beyond which an impact-
ing proton is more likely to be absorbed instead of being
scattered out of the jaw by multiple coulomb scattering or
nuclear elastic scattering (this last process being ignored in
the rest of this section). The computation ofbc is made
in section 3.2. By comparing�b to bc in Table 5, we can
conclude that in LHC, at least at injection we will be in a
regime of strong outscattering.

3.1 Side escape by multiple coulomb scattering

Multiple coulomb scattering is described by the Moliere
theory, which is a formalism of diffusion applied to a large
number of small successive transverse kicks applied to a
charged particle passing through matter [7]. The number
of scatterers per millimeter is very high. Both the angular
distribution, with the polar angle�, dN=d�mcs(s) and the
spatial transverse onedN=d�mcs(s) of the protons around
the original axis of flight are gaussian up to� 3 standard
deviations. The dependence on a given monoatomic ma-
terial is contained mostly in the radiation lengthLR (see
Table 4). The standard deviations ofdN=d�mcs(s) and
dN=d�mcs(s) are (with units m and TeV/c)
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Figure 1: The m.c.s angle after one absorption length, nor-
malised to an effective machine aperture of 10 r.m.s beam units for
different materials. The two lines delimit the momentum range in
which the outscattering density is high in the aperture of the ring.

Table 5:An estimator of the impact parameter range�b of the
proton in LHC computed withvd = 1 �/s, at the normalised
transverse distance from the beam axisn1 = 6, compared to the
critical impact parameterbc below which outscattering by the col-
limator edge is important.

p [TeV/c] �b [�m] bc [�m]
.45 4 12
7 1 0.7

�omcs(s) =
13:6 10�6

p
(
s

LR
)1=2

and �o
mcs(s) =

7:8 10�6

p
(
s3

LR
)1=2: (3)

Disregarding edge escape, the proton flux is attenuated
exponentially along the collimator by nuclear absorption,
with the absorbtion length�abs(Z) (see Table 4). The an-
gular distribution of the protons escaping a collimator can
therefore be estimated using (3) withs = �abs(Z). This
quantity, normalised to an effective machine aperture of
10�0, where�0 is the r.m.s beam divergence at the colli-
mator location, is plotted in Figure 1 for different materi-
als. Two cases are favourable for collimation . At low
momentum (p < 100 GeV ), and using a heavy target, the
scattered protons are spread much beyond the the aperture.
Most of them are lost nearby the collimator and the rest
is strongly diluted in the aperture area. At high energy (
p > 10 TeV ), by using a light target, the scattered protons
stay well inside the aperture. They will do many turns and
finally be absorbed by the collimator which is their sole ob-
stacle at small amplitude. In the intermediate momentum
range (the case of LHC), a high intensity cannot be cleaned
by a single collimator, if the beam loss rate is high in the
sense of Section 2.

3.2 Critical impact parameter

The critical impact parameterbc is computed by using
(3) with agains = �abs(Z). The quantity�red(Z) =

λ a
bs
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Figure 2: The reduced length�red as a function of the atomic
numberZ. For metals (black dots),�red is nearly constant
with an mean value�red = 0:66 m and a relative variance
�(�red)=�red = 0:3.

(�3abs=LR)
1=2 is given in Figure 2 for several materials. In-

terestingly, the metals of interest for collimation (good heat
conductivity and good vacuum properties) all have a similar
�red, with no visible dependence onZ. Thus, the critical
impact parameter is approximately metal-independent and
equal to (with units�m and TeV).

bc = 5:2=p : (4)

3.3 Secondary collimator material

The wide angular range of protons scattered off the pri-
mary collimator implies a somewhat uniform distribution
of impacts on the secondary collimators . Provided
they are long enough (� 5�abs), tertiary particles will be
mostly issued from a surface layer of thicknessbc. The Z-
indepence ofbc therefore allows to choose freely the mate-
rial of the secondary collimators . Other parameters will
be considered (physical length and radiation length, ther-
mal conductivity, resistance to shock waves for exemple).

3.4 Secondary collimators needed

At Tev energies, the outscattering rate off a primary colli-
mator is close to unity. The use of a two-stage collimation
system is therefore mandatory.

4 OPTICS AND COLLIMATION

The material discussed here is fully developped in [8],[9]
and [10], to which the reader can to refer for more details
and full demonstrations. In this section we do not consider
true scattering in collimators , which is introduced in Sec-
tion 6. We only do optics and geometry in the four dimen-
sional phase space . We consider the primary collimators
as pure isotropic scatterers and secondary collimators as
black absorbers. Our criterion to define an optimal two-
stage collimation system is to minimise the surface occu-
pied by the secondary halo in the plane of the normalised
amplitudeAX � AY , or the largest distance to the origin
of this same surface as it is delimited by the secondary
collimators .



Table 4:The nuclear absoption and the radiation lengths in metric units for some Z-values. Cross-sections are valid in the few hundred
GeV range.�dd at 450 GeV/c.�abs andLR in [cm]. All cross-sections in [mbarn].bpN in [GeV�2c2].

Element Z A �abs LR �abs �pN;el npp �pn;el �d bpN
H 1 1 720 865 33 - - 7 3.4 12.0
Be 4 9 40 35 200 70 3.2 22.4 11 75
Al 13 27 39 8.9 420 210 4.7 32.7 16 120
Cu 29 63.5 15 1.4 780 450 6.2 43.4 21 220
W 74 207 9.6 0.35 1650 1120 9.2 64.4 31 450

4.1 Numerical exemple

To illustrate numerically some results and to help compar-
ing different systems with each other, we will use some
identical basic parameters in further sections. The jaws of
the primary collimators will always be retracted byn1 = 6
normalised transverse r.m.s. beam radius and the jaws of
the secondary collimators always byn2 = 7. All other
quantities will be deduced from these two numbers. These
numbers are presently a kind of canonical set used for LHC
collimation studies. They can of course be changed to any
other value for another application.

4.2 Normalised coordinates

The phase coordinates(z; z0) of the two transverse direc-
tions are normalised at each point along the ring with

Z =

�
Z

Z 0

�
=

1

�z

�
1 0
�z �z

��
z

z0

�
(5)

z standing here for either thex or y direction,s being the
longitudinal coordinate ,�(s) and�(s) the Twiss functions
and� = (��(s))1=2 the transverse r.m.s beam size. The
transfer matrixM12 transporting a particle froms1 to s2
in the normalised coordinates(Z;Z 0) is then simply the
rotation

M(�) =

�
cos� sin�
� sin� cos�

�
(6)

with � being the betatronic phase advance betweens1
and s2. The betatronic motion is thus reduced to a har-
monic motion, where the betatronic phase advance plays
the role of the time, or of the longitudinal coordinate
s. In the normalised phase space , the invariant am-
plitude of a particle in one transverse direction (or 2D-
phase space) isA = (Z2 + Z 02)1=2. The 4D-amplitude is
A = (A2

x +A2
y)

1=2.

4.3 One dimensional betatronic collimation

The proton which drifts slowly outwards touches the colli-
mator when being very close to its maximum spatial exten-
sionZo = (n1; 0) (Figure 3). By scattering in the collima-
tor it gets an angular kickZ 0 = Kz, distributing uniformly
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Figure 3:One dimensional betatronic collimation . A particle is
scattered close to its maximum transverse positionZ = n1. If it
is not absorbed, it is scattered along the vertical lineZ = n1. If a
secondary collimator is at the depthn2, the shortest cut along this
line is made with a secondary collimator at the phase advance
�opt.

the protons along the lineZ1 = (n1;Kz). The sole free pa-
rameter to choose the location of a secondary collimator is
the phase advance� between the primary collimator and
the secondary collimator . The minimisation of the sec-
ondary halo amplitude is done by cutting the lineZ = n1
with a secondary collimator at the phase advance [8]

cos�opt = �
n1

n2
: (7)

The maximum secondary amplitude escaping the two-
stage collimation system is the absolute possible mini-
mumAmin

cut = n2 which is equal to the secondary col-
limator aperture. This is obtained by transportingZ1 at
�opt, or Z2 = M(�opt)Z1. Then, using (7) it follows
Z2 = n21=n2 + (1 � n21=n

2
2)
1=2Kz. Cutting atZ2 = n2

finally gives Kcut = Kz = (n22 � n21)
1=2 and A =

(Z2
1 + K2

cut)
1=2 = n2. The two signs in (7) corresponds

to cutting each of the two half linesZ = n1, Z 0 > 0 and
Z 0 < 0.

4.4 Two dimensional betatronic collimation inX � Z

symmetric optics

The particular optics which has the property�x(s) =
�y(s) (or equivalently�x(s) = �y(s)) was studied because
a soft symmetric low-� insertion, which has this property,
was envisaged for a time for the cleaning system of LHC
[11]. Later, it appeared that this particular case is the sole
one which we have been able to treat analytically. We use
it here to show that a two dimensional collimation system



is not a simple extension of the one dimensional case dis-
cussed above.

The closest extension of the one dimensional system in
two dimensions is the use of circular collimators (cir-
cular in normalised coordinates, approximated for exem-
ple by eight jaws in a real case), with a radial aperture
n1 for the primary collimator andn2 for the secondary
collimators . To simplify the present discussion, we con-
sider only the impact point on the primary collimator at
(X;Y ) = (n1; 0). The treatment of the other azimuth is
done in [8]. The non trivial difference with a one dimen-
sional system appears at the impact point in the primary
collimator where scattering populates every azimuthal di-
rection in theX 0 � Y 0 plane.

Let us write the coordinates of the proton before scatter-
ing

Ao = (X;X 0; Y; Y 0) = (X;Y) = (n1; 0; 0; 0) (8)

We limit our discussion to two extreme cases, which we
call parallel and orthogonal scattering. Parallel means scat-
tering in the plane of the original betatronic oscillation, i.e.
(X 0; Y 0) = (kx; 0) in our case of azimuth. Orthogonal
scattering is when(X 0; Y 0) = (0; ky).

Parallel scattering leaves intact the Y-amplitude, i.e.
Ay = 0 before and after scattering . The problem is there-
fore reduced to the one dimensional case and is solved by
installing two circular collimators atcos�opt = �n1

n2
.

The coordinates of the proton after orthogonal scatter-
ing are

A1 = (X1;Y1) = (n1; 0; 0; ky) with ky�[�1;1]:
(9)

In the abscence of coupling, there is no way to cut on
the X-amplitudeAX = n1 which is smaller then the sec-
ondary collimator aperturen2. To cut efficiently on the
Z-amplitude, we must place an additional secondary col-
limator where the angle is entirely converted to amplitude,
i.e. at phase advance� = �=2 from the primary collimator
. A1 transforms to

A2 = (M(�=2)X1;M(�=2)Y1) = (0;�n1; ky; 0)
(10)

The secondary collimator cuts onY at kz � n2 . The
largest vector leaving that collimator is then

A2 = (n1; 0; n2; 0) with A2 = (n21 + n22)
1=2: (11)

A2 is the largest combined amplitude passing the sec-
ondary collimators and occurs in the case of orthogonal
scattering. The intermediate cases between parallel and
orthogonal scattering are cut in amplitude at values in
the rangeA�[n2; A2] [8]. The limits are identical at other
X � Y azimuths. With our numerical set, the secondary
halo extends up toA2 = 9:2.

The important result is that, at least in the kind of optics
used in this section, with optimal secondary collimator lo-
cations, the cut in amplitude is done at a value somewhat
larger than the secondary collimator aperture. We will see

that this result remains true in any kind of optics, if the
cleaning section is of reasonably finite length.

Other optics

FODO optics of different phase advance per cell were ex-
plored, by fitting the circular collimator locations with nu-
merical methods [8]. The result, expressed by the largest
secondary amplitudes was always less performant than the
symmetric low-beta section discussed here above.

Rectangular collimators

If the number of collimators is an issue or conversely, if
the geometrical aperture of the ring is large enough, rect-
angular collimators (X and Z jaws only) can be used. The
degradation of the performance in amplitude cut relative to
cicular collimators is� 20% [8].

5 LOCATING COLLIMATORS IN ARBITRARY
OPTICS. THE LHC CLEANING INSERTION.

The general case of finding the best solution of primary
and secondary collimator locations in an arbitrary optics
requires a numerical approach. The DJ code [9],[10] al-
lows to locate both in longitudinal position andX � Z az-
imuth an arbitrarily large number of jaws (here and below,
jaw stands for a pair of transversely opposite jaws). It is
found more efficient at the same hardware cost to abandon
the use of circular collimators , anyway approximatted by
eight flat jaws, and to let the location and the azimuth of
every jaw free in the fit. The number of free parameters
is thereforeNpar = 2N + 3 = 27 for the equivalent of
three circular collimators (3 �8) and three primary jaws, the
last ones being kept horizontal,vertical and skewed at45�.
The function to be minimised can be the radiusAmax of the
smallest circle surrounding the geometrical edge of the sec-
ondary halo.Amax is not a smooth function and classical
minimum finding methods often fail to find a good solution.
The simulated annealing method [12] is used instead. This
algorithm always find several good solutions, allowing to
choose one which does not create hardware conflicts.

Several FODO like optics were tried for LHC, with dif-
ferent phase modulation�z��x. The better resultAmax =
8:4 is obtained for the largest achievable (�z � �x) in an
insertion which has a total phase advance�x � �z � 2�
(see Figure 4). Our interpretation of the result is that a
large phase modulation allows to catch more of the ’orthog-
onally’ scattered protons (Section 4.4). On this point, see
also [13]. The absolute value ofAmax is quite good and
anyway better then the optimum reached with the symmet-
ric insertion of Section 4.4.

6 SCATTERING AND COLLIMATION
EFFICIENCY

The approach used in section 4 and 5 which allows to fit
collimator locations in a given optic and to choose between
different optics do not allow to compute the efficiency of



Figure 4: IR7 lattice and tune-split functions for LHC ver-
sion 5.0, with the IR7 quadrupoles tuned for high positive
tune split, givingAmax = 8:45�. The range of tune ad-
vance (in2� units) corresponds to the ranges � [290; 725].

a system. True scattering in matter in both primary and
secondary collimators is needed. The complexity of a two-
stage collimation system implies to use numerical meth-
ods. Even the simple case of scattering near the edge of a
block of matter cannot be treated analytically. In this sec-
tion, we discuss only elastic interactions. Inelastic interac-
tions are discussed in Section 8.

Elastic scattering must be coupled to multiturn tracking
in the ring. Elastic scattering near the edge of a media was
treated exhaustively for the first time, to our knowledge, by
Andy van Ginneken [14]. Our own code K2 [15] was in-
spired by his ELSIM program. The K2 code is made of
a scattering module, does tracking between collimators in
a beam line section described with the MAD format, does
an amplitude analysis and closes a turn if the particle was
not absorbed. To ensure an approximately realistic distri-
bution of impacts on the primary collimator, the proton is
circulated inside the primary aperture using linear motion
superimposed with a variable transverse drift speed until it
touches a collimator. We gave some emphasis to fast algo-
rithms, to allow for the large statistics needed to compute
high collimation efficiencies.

Halo drift

Halo protons become unstable through transient resonant
states or experience chaotic motion. The detailed mecha-
nism of losses might depend strongly on operational con-
ditions of the machine. An average case is used for colli-
mator studies. We use a smooth variable transverse drift
speedvd. We verified that the calculated collimation effi-
ciency do not vary strongly over a quit large rangevd with
a two-stage collimation system, while it is obviously not
the case with a single stage system.

Tracking in collimator

While in Section 3 we considered multiple coulomb scat-
tering to show the importance of edge scattering, nuclear
scattering of protons on both nuclei and the nucleons inside
the nuclei is of similar importance. This is shown by com-
puting a weighted ratio of average scattering angles (mcs
and elastic scattering on individual nucleons, and using the
data of Table 4) in a Cu target as

r =
�pp;elastic

�mcs(1�abs)

�Cupp

�Cuinel
= 0:5 (12)

We only briefly describe how we parametrise nuclear elas-
tic processes. In this report, the soft momentum depen-
dence of some parameters is neither shown or discussed.
This will be the object of a more exhausive document [16].
Nuclear elastic processes can to a very good degree of pre-
cision be described by an optical model. The incident wave
diffracts on a grey object of density decreasing transversely
with a Gaussian law. The angular distribution of the distri-
bution is the Fourier transform of the density of the target,
i.e. it is also Gaussian. Its standard deviation�(�) is related
to the effective radiusReff of the proton-target compound.
The Lorentz invariantt = (p�)2 is usually used and the an-
gular distribution is written

d�

dt
= �elbe

�bt: (13)

The parameterb is related toReff with

Reff � 0:4b1=2 [fermi; (Gev=c2)2] (14)

and�el is the elastic cross-section .
A proton can scatter both on nuclei (notedN ) and on

nucleons (notedn) inside the nucleus. Proton and neutrons
are treated identically. In addition to elastic scattering ,
the incident proton do diffractive dissociation on nucleons.

Proton-nucleon elastic scattering

Proton-nucleon (pn) elastic scattering has been much
studied [17],[18]. For our purpose, the approximate dif-
ferential cross-section (13) is adequately precise, account-
ing for most of the cross-section . From data at 20 Gev/c
[19] and at 175 Gev [20], we deduce thatpp elastic scat-
tering is not visibly modified when occuring inside a nu-
cleus. In particuliar, no trace of double elastic scattering
is observed. The equivalent number of free scatterers, as
measured by [19] can be modelled with a simple geometri-
cal model, considering that only the nucleons located near
the equator in a plane perpendicular to the incoming proton
contributes to the cross-section . The dependence of the
cross-section on the atomic massA is fixed by adjusting
the thickness of the contributing layer. We get a number of
indivual scatterers per nucleus

npn = 1:56A1=3: (15)

Thepn elastic cross-section is then�pn(A) = npn�pp;el.
In the TeV range (LAB frame),�pp;el � 8:5 mb andb �
13 GeV�2.



Single diffractive dissociation

The single diffractive dissociation process is close to elas-
tic scattering but the excitation of one of the nucleons, to
a massM larger than the nucleon massmn is done at the
expense of a relative momentum loss�p = ��p=p of the
nucleon staying intact. The case of the incident proton stay-
ing intact is of interest here. The other case is treated like
an inelastic interaction (see Section 8). The variables�p
andM are related by (at low-order approximation)

�p �
M2

s
� M2

2mnp
(16)

with s the centre of mass energy squared andmn the nu-
cleon mass. The double differential cross-section can be
approximated by [17]

d2�

d�p dt
=

ad bd

�p
e�bdt (17)

We usebd = (7=12)bpp;el, while ad � 0:7mb [17]. The
mass range isM�[Mo; (0:15s)

1=2]. We use the approxima-
tion Mo � mn � 1 GeV=c

2. With (16), we compute a
momentum range�p�[Mo=(2p); 0:15]. The integral cross-
section is�d;pn = npnad ln(0:15s) = npnad ln(0:3p) .

Proton-nucleus scattering

Total proton-nucleus (pN ) cross-section are reported in
[7]. They are almost constant in the few hundred GeV/c
momentum range. ElasticpN ( or coherent) cross-sections
are found at the same source, while the differential elastic
cross-section are found in [20] at 175 GeV/c. Some of these
values are given in Table 4. Non measured values (W) are
interpolated with A1=3 or A2=3 laws, which fit well the data
[20], [16]. A slight momentum dependence is given to the
data in Table 4. It is related to thepn scattering , which
has a impact on the total cross-section . We consider that
the coherent cross-section cannot rise significantly at high
energy for the nucleus to be already a black absorber below
1 TeV/c. The formula (13) is adequate to describe the data,
except for very heavy nuclei where secondary and tertiary
diffraction peaks are visible in data [20]. This is explained
by the blackness of the high-A nuclei up to their edge. But
even for lead (A = 82), the relative integral of the second
peak is only 5% of the elastic scattering cross-section ,
while the heaviest target to be considered in practice woud
be tungsten (A = 74). Numerical values can be found in
Table 4.

Algorithm for multiple coulomb scattering

In the neighbourhood of the edge of a collimator jaw,
multiple coulomb scattering , which is a quasi continuous
scattering process needs a special treatment. The obvious
method of doing small steps is precise but time consum-
ing. The complete m.c.s. formalism shows that using the
correlation factor��� =

p
3=2 between the angle and the

transverse offset (both following Gaussian distributions of

variances (3)), an arbitrarily large step can be made with-
out biasing the result. The actual step is computed as the
distance at which the transverse offset� = 4�o

mcs coin-
cides with the edge of the jaw. This procedure, even if it
requires to solve a 3rd-order equation at each step is very
fast. When the impact parameter is large enough, the jaw
is traversed in one step, if other interactions do not occur
[16].

The large angle tail of Coulomb, or Rutherford, scatter-
ing is treated as a discrete interaction. The cross-section
is the integral of the differential cross-section above� �
4�omcs [16].

Tracking from collimator to collimator

The protons are transported by standard linear transfer ma-
trices [21]. Drift spaces, bending magnets and quadrupoles
are considered. To allow the use of linear transfer matrix
elements in the relative momentum deviation�p , a cut-off
is made at�p < 1%. Those protons scattered beyond that
momentum are treated like inelastic collisions (Section8).

Check of ring aperture and collimator efficiency

Doing an aperture control all along the ring is very time
consuming. Step tracking and a detailed and coherent
model of misalignments (magnetic and mechanic) and
closed orbit defaults would be needed. While this kind of
analysis is under work, up to now we checked the com-
bined amplitude of the proton at the end of the cleaning
section. Above a specified amplitude (in general close to
the effective geometrical aperture of the ring), the proton
is considered to have touched the vacuum chamber and
the tracking is stopped. Below this cut-off amplitude, at
each turn the amplitude is recorded in a so-called survival
plot (see Section 7 and Figure 5 for an example), which
gives the relative number of proton surviving a given am-
plitudeFs. Then, off-line, the betatronic phase-space plots
are analysed. A lower limit of the longitudinal dilution of
the losses is given by the approximative formula

Fd � 1=2�� (18)

and by using for� the smallest of�x and �z near the
aperture limitation. This formula is valid if the dilution
in phase is almost homogeneous (checked with the phase-
space plot). Then the efficiency of the system, for a given
aperture limitation, is

�ring = Fs(Aring) Fd (19)

Closing a machine turn

A proton surviving the aperture control is transported in
one step to the beginning of the cleaning section, with a
linear transfer matrix. The sole non-linear effect introduced
in K2 is some tune smearing of adjustable range. The ac-
tual tune is drawn randomly following a truncated Gaussian
distribution at each turn.
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Figure 5: The survival plot in LHC at injection with the clean-
ing insertion described above, see text. In abscissa, the radial
betatronic amplitudeAr. In ordinate, the functionFs(Ar), nor-
malised to 1000 events touching a primary colimator. See text.

Table 6:Expected efficiency of the betatronic cleaning insertion.

p Fs Fd � �DS m

[Tev/c] - [m�1] [m�1] [m�1]
.45 2 10�3 5 10�3 10�5 10�5 � 40
7 4 10�4 5 10�3 2 10�6 10�5 � 330

7 USING K2 FOR LHC COLLIMATION

A preliminary calculation of the efficiency of the LHC
cleaning insertion (see Section 5) was made with the K2
code. The primary collimators were made of 200 mm long
Aluminium jaws while the secondary collimator jaw are
made of Copper and 500 mm long. The survival plot at
injection energy (Figure 5) indicate that the effective edge
of the secondary halo is close to the amplitudeAsec = 8,
a value slightly better than the geometrical edge computed
by DJ (Section 5). The relative flux of protonsFs above
Asec = 8:4 is given in Table 6. The longitudinal dilution
Fd of these protons along the ring is computed with (18)
using� = �min;arc � 30 m.

Efficiency margin in the ring

The margin factorm in Table 6 is either

m =
�nq

fNp�
or m =

_nq
_Nloss�

(20)

Comparing (20) to (1) indicates that an effective length
of dilution of the halo after collimation can be defined by
Leff = ��1.

Another efficiency factor ,�DS , is related to losses in
the dispersion suppressor which is adjacent to the collima-
tion system. Protons issued from diffraction dissociation
and lower momentum particles (mostly neutrals ones) are
swept out by the bending magnets and are lost locally. The
effect is minimised by the presence of the warm bending
magnets of the so-called dog-leg structure of the collima-
tion insertion [23] but cannot be avoided completely. It

limits locally the efficiency at top energy.
The margin factor is computed with the largest of� and

�DS .
An earlier simulation (LHC V4.2) was compared to a

simulation with the STRUCT code [24]. Both calculations
agree to better than a factor three for�.

The margins look comfortably large but high values are
needed. It must be remembered that beam losses are partly
of erratic nature. A spicky time structure can strongly lower
the margin temporarily. The ring aperture is also dependent
of the operation. Lowering the aperture of the ring by one
normalised unit nearAsec drops the margin by nearly one
order of magnitude.

7.1 Halo rates upstream of experiments

Residual halo rates near experiments are estimated by inte-
grating the fraction of the protons which escape the clean-
ing area and are captured by the aperture limitation up-
stream or at an experiment. We consider first the case of
a so-called Roman pot, i.e. an abrupt change of the pipe
aperture made of two half-planes, separated by�npot r.m.s
beam sizes. Protons of amplitudeA = Aring � 30 must
be inside a phase window�� = � cos�1(npot=Aring) to
touch the pot. Protons of amplitudeA < npot never touch
the pot. With an amplitude distributiondN=dA � const

aboveAsec � 10 (see Section 7), it follows that out of the
fractionFs of the protons surviving the collimation sys-
tem, the subfractionFpot = 0:5��=2� � 0:33 touches the
pot, withnpot � 15. The overall rate with nominal LHC
parameters shall therefore be (see Section 2)

_npot = FpotFs _Nloss = 3 105 ps�1 : (21)

Near experiments installed in a low-beta insertions, both
�x(s) and�z(s) grow to very large values. We can use
Flow�beta � 1 and therefore (21) becomes_nlow�beta �
106 ps�1. These rates are comparable to beam-gas losses
at the same locations. Their impact in terms of muon back-
grounds have been carefully computed [22].

8 INELASTIC INTERACTIONS IN DISPERSION
SUPPRESSORS NEAR COLLISION POINTS

Downstream of collision points, most of secondary parti-
cles issued from inelastic interactions are lost in the ad-
jacent triplet of quadrupoles and in the beam separation
magnets [25], but the forward protons of diffractive dis-
sociation will be lost where the dispersion grows, i.e. after
entering the dispersion suppressor. Their impact can be es-
timated in a simple way. It is shown in [26] that in a section
with a vacuum pipe of fixed radius, the rate of diffractive
losses per unit length along the pipe is_n = L ad D

0=D

, with L = 1034 cm�2s�1, ad = 0:7 mb,D(s) the lo-
cal dispersion andD0 = dD=ds. In the high luminos-
ity insertions of LHC,(D0=D)max � 0:07 and therefore
_nmax = 5 105 m�1 s�1 . With a steady quench level at
_nmax = 8 106 m�1 s�1 , the margin factor ism � 16
and is reduced tom � 6 with the ultimate luminosity
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Figure 6: The experimental layout of the SPS collimation ex-
periment at 120 GeV/c.

L = 2:5 1034cm�2s�1 . There is little chance for the lu-
minosity to grow erratically above its design value. The
margin factor is therefore adequate. A small degradation of
the margin must be expected if magnet misalignments and
closed orbit effects are taken into account.

9 EXPERIMENTAL WORK

In order to validate the K2 code an experiment was made
in April 1997 at the SPS accelerator. A 120 GeV proton
beam was made to coast. Its intensity wasNp � 1012p.
The beam was debunched and made to slowly diffuse trans-
versely by injecting some wideband noise in the kHz range
through a damper. The noise level was adjusted to set the
loss rate to_nloss � 5 108ps�1. Three horizontal colli-
mators , called BRCZ1, 2 and 3 in Figure 6, were installed
in a weakly radioactive straight section . They are made
of two opposite 250 mm long Aluminium jaws. The phase
advance between the collimators was�1�2 = 90� and
�1�3 = 200�. The length and the material were chosen
to get collision rates of the same order of magnitude in the
three collimators . A system aiming at highest efficiency
(thicker secondary jaws) would have made the rate at the
tertiary collimator too low for reasonable conditions of
measurements. A vertical collimator , made of two4 �abs
jaws (stainless steel), was installed at�1�v = 90� to keep
under control the large amplitude scattered protons.

9.1 Detection of interactions

The most immediate observable which is proportional to
the collision rate in a collimator is the rate of inelastic in-
teractions. The detection of elastic collisions would require
to install telescopes in the vacuum chamber and would be
affected by a large background because of the thick target.
Inelastic interactions, on the other hand develop a shower
of which low energy particles escape at large angle.

A detailed simulation with the code GEANT [27] al-
lowed to compute the energy deposition in scintillation
counters (surface 35 cm2, thickness 1 cm) placed near the
collimators . To avoid the saturation of the photomultipli-

Figure 7: The analog spectrum in the scintillator as simulated
with GEANT.
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Figure 8: The raw relative rates measured at the collimators .
Diamonds and upper curve : PRIM, squares and medium curve :
SEC, triangles and lower curve : TER. Points are raw measure-
ments (for some corrections see text). The curves are the result
of multi-turn tracking and scattering in jaws made withe K2 code.
The wavy structures on the curves are of statistical nature. The
data analysis is preliminary.

ers, the counters were placed 90 cm above the beam line.
The rate right above the collimator is small and grows with
the distance when moving downstream. A broad maximum
is reached at a distance of 65 cm downstream of the centre
of the collimator . Installed at that location the counters
are almost insensitive to a position error and the simulated
yield isYpm � 3 10�3, with a maximum rate in operation
_npm = Ypm _nloss � 3 105counts s�1.

One sample of the analog spectrum to be recorded at the
counters is shown in Figure 7. Minimum ionising particles
traversing the scintilator populate the second peak. Very
low energy electrons and photons converted to photoelec-
trons populate the first peak. To best control the calibration
a threshold for counting was fixed near the lower edge of
the second peak. The counters were calibrated in a high
energy tertiary muon beam of the SPS fixed target beams.

9.2 The measurements and their simulation.

The principle of the measurements is to set all the collima-
tors at their respective transverse positionni, measured in
normalised units. We use the notationn1 for the primary



Figure 9:The adjuted relative rates measured at the collimators
. The data are adjusted to the simulation (curves) by leaving free
two parameters, see text. The data analysis is preliminary.

collimator (PRIM),n2 for the secondary collimator (SEC),
n3 for the tertiray collimator (TER) andnv for the verti-
cal collimator (VERT). The nominal positions aren1 = 6,
n2 = 7, n3 = 10 andnv = 8. At the horizontal collima-
tors ,�ni = 1 is equivalent to 0.8 mm. We recorded the
rates of the four counters, varyingn2 (SEC retraction) by
steps�n = 0:5 in the rangen � [6; 11].

The origin of theni scales is found by removing all the
jaws except one. Then, its opposite jaw is pushed towards
the beam by small steps, until a spike of losses indicates
that the mobile jaw is more inside the aperture than the
fixed one. The losses are monitored and displayed con-
tinuously with a time integration of� 10ms to allow this
measurement. The procedure is repeated for all the col-
limators . The closed orbit (CO) at the collimator is the
average of the two positions when the spike occurs. We
estimate the CO error to�(n) � 0:5.

The proportionality between the normalised an the real
position is given by the computed beta functions, with an
error likely to be smaller than 5%. The raw data are pre-
sented in Figure 8. We ran K2 for every set ofni positions.
Many small effects on the data are taken into account. A
non exhaustive list includes the variation of the GEANT
yieldsYpm with the distance between two opposite jaws or
with the impact parameter distribution changing with dif-
ferent relative retractions. The absolute loss rate during the
data acquisition time of one set of positions (� 10 s) can-
not be measured with adequate precision. It would rely on
the beam current transformer, which shall have a resolution
of at least _I=I � 10�4 to be useful. The data are therefore
presented as fractions of unity. No relative factors between
collimators were introduced, and only the data relative to
the three BRCZ (which are identical) are compared. The
agreement in both shape and amplitude of the data at the
primary and the secondary collimators is quite good. The
tertiary rate on the other hand is quite below the simulation.

To evaluate the importance of the discrepancy, we let a
cross-calibration coefficient to vary between the three rates,
to fit better to the K2 simulation. In Figure 9, the SEC
data are multiplied byfSEC � 0:7 and the TER data by

fTER � 3. More work is needed to determine if the dis-
crepancy observed with the tertiary data is of experimental
nature or related to the K2 algorithms (while we have a
preference for the first hypothesis).

If the present results are not fully satisfactory from a
physics point of view, on the other hand they are quite good
in view of the design of a collimator system. The mea-
sured rates at the tertiary collimator being smaller than the
predicted ones, the last ones shall be used to compute the
expected efficiency of the collimator system

10 MOMENTUM COLLIMATION

Momentum collimation is not discussed here, but its need
at LHC is established (see section 2). The formalism to
design an insertion exists [8], and a case study is going on,
using a updated version of the DJ code [10].
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