Simulations for 7TeV beam with IR3 combined cleaning and TCRYO

A. Rossi, R.W. Assmann

Collimation Phase 2 as complement to Phase 1

- 1. Additional secondary collimators and scrapers in the IR3 and IR7 warm regions (already prepared): Cu jaws with higher stopping power and lower impedance
 - CERN white paper
 - SLAC LARP
 - EuCARD
- 2. Collimators into super-conducting dispersion suppressors (cryo-collimators) in IR7, IR3 and IR2
 - EuCARD (cryo-coll)
- 3. New ... Combined Betatron/Momentum **Cleaning** in IR3

- While we lose efficiency with the combined system, we win with the collimators in the cryogenic dispersion suppressors.
- SC link cable in IR3 OK for 500 kW losses at primary collimators (nominal). Maybe require additional passive absorbers.
- LHC collimation with 28 collimators less than now → faster setup and less beam time required. Lower impedance (20 TCP/TCS instead of 38 TCP/TCS)!
- Limitations with Single Event Upset in IR7 are avoided as losses are relocated to IR3 (100 times less radiation to electronics for same beam loss in IR3).
- System in IR7 kept operational in case of problems (spare system).
- Much better flexibility to react to limitations.

IR3 collimator layout for momentum/betatron cleaning

Beam 1			Beam 2		
Phase I	Phase II	angle, material	Phase I	Phase II	angle, material
	TCP.6L3.B1	Hor		TCP.6R3.B2	Hor
	TCP.A6L3.B1 replacing TCHSH.6L3.B1	Ver		TCP.A6R3.B2 replacing TCHSH.6L3.B2	Ver
TCSG.5L3.B1	TCSG.5L3.B1	Hor	TCSG.5L3.B2	TCSG.5R3.B2	Hor
	TCSG.A5L3.B1 replacing TCSM.5L3.B1	Ver, Carbon Hor, Copper		TCSG.A5R3.B2 replacing TCSM.5R3.B2	Ver, Carbon Hor, Copper
TCSG.4R3.B1	TCSG.4R3.B1	Hor	TCSG.4R3.B2	TCSG.4L3.B2	Hor
	TCSG.B4R3.B1 replacing TCSM.4R3.B1	Ver, Carbon Hor, Copper		TCSG.B4L3.B2 replacing TCSM.4L3.B2	Ver, Carbon Hor, Copper
TCSG.A5R3.B1	TCSG.A5R3.B1	Skew = 170 deg	TCSG.A5R3.B2	TCSG.A5L3.B2	Skew = 170 deg
	TCSG.C5R3.B1 replacing TCSM.A5R3.B1	Ver, Carbon Skew, Copper		TCSG.C5L3.B2 replacing TCSM.A5L3.B2	Ver, Carbon Skew, Copper
TCSG.B5R3.B1	TCSG.B5R3.B1	Skew = 113 deg	TCSG.B5R3.B2	TCSG.B5L3.B2	Skew = 11 deg
	TCSG.D5R3.B1 replacing TCSM.B5R3.B1	Ver, Carbon Skew, Copper		TCSG.D5L3.B2 replacing TCSM.B5L3.B2	Ver, Carbon Skew, Copper

Beam 1			Beam 2		
Phase I	Phase II	angle	Phase I	Phase II	angle
	TCRYO.AR3.B1	Hor, Tungsten		TCRYO.AL3.B2	Hor, Tungsten
	TCRYO.BR3.B1	Hor, Tungsten		TCRYO.BL3.B2	Hor, Tungsten

TCRYO are 2 jaws, 1 m tungsten collimators

Simulation input parameter

- Beam energy: 7TeV
- Beam optics V6.503, sextupoles on
- Collision, nominal β*

	Crossing	Separation	Solenoid
IP1	1	0	
IP2	1	1	0
IP5	1	0	
IP8	1	1	0

- Halo = sheet beam on primary collimators (0.5 μm impact parameter, Gaussian transverse distribution)
- No energy spread

Collimator setting

	Family	Half gap setting $[\sigma]$
LSS7	TCP IR7	open
	TCSG IR7	open
	TCLA IR7	open
	TCDQ	8
L330	TCS TCDQ	7.5
1000	TCP IR3	6
	TCSG IR3	7
L333	TCLA IR3	10
	TCRYO IR3	20
	ТСТН	8.3
LSS1	TCTV	8.3
	TCL	8.3
1000	ТСТН	8.3
L552	TCTV	8.3
	ТСТН	8.3
LSS5	TCTV	8.3
	TCL	10
	ТСТН	8.3
LSS8	TCTV	8.3

Beam 1 - horizontal sheet beam @ TCP.6L3.B1 (0.5µm impact parameter)

Ideal machine = without imperfections

7 June 2010

A. Rossi - 117th CWG

7

Beam 1 - horizontal sheet beam @ TCP.6L3.B1 (0.5µm impact parameter)

Ideal machine = without imperfections

7 June 2010

A. Rossi - 117th CWG

Beam 1 – vertical sheet beam @ TCP.6L3.B1 (0.5µm impact parameter)

Ideal machine = without imperfections

7 June 2010

A. Rossi - 117th CWG

Beam 1 – vertical sheet beam @ TCP.6L3.B1 (0.5µm impact parameter)

Ideal machine = without imperfections

A. Rossi - 117th CWG

Ideal machine = without imperfections

LHC Collimation

CER

Beam 2 – horizontal sheet beam @ TCP.6R3.B1 (0.5µm impact parameter)

Ideal machine = without imperfections

7 June 2010

A. Rossi - 117th CWG

IR3 combined cleaning + W-TCRYO Beam 2 – horizontal sheet beam @ TCP.6R3.B1 (0.5µm impact parameter)

Ideal machine = without imperfections

A. Rossi - 117th CWG

Beam 2 – vertical sheet beam @ TCP.A6R3.B1 (0.5µm impact parameter)

Ideal machine = without imperfections

7 June 2010

A. Rossi - 117th CWG

Beam 2 – vertical sheet beam @ TCP.A6R3.B1 (0.5µm impact parameter)

Ideal machine = without imperfections

A. Rossi - 117th CWG

Updated aperture model

Updated aperture model

IR3 combined cleaning + W-TCRYO Beam 1 – horizontal sheet beam @ TCP.6L3.B1 (0.5µm impact parameter)

19

Beam 1 – vertical sheet beam @ TCP.A6L3.B1 (0.5µm impact parameter)

20

- IR3 combined momentum/betatron cleaning has been studied for the ideal machine: the scheme seems to work up to ultimate beam intensity.
- Effect of aperture model has to be further investigated.
- Due to the lower efficiency as compared to the 'standard' collimation scheme, higher background noise to the experiments is expected.